CURRENT ISSUE
DECEMBER 2016
KINDLE EDITION



SEARCH JOURNAL ARCHIVES


SEARCH PUBMED


MANUSCRIPT SUBMISSIONS


SUBSCRIBE TO SLEEP

CONTINUING MEDICAL EDUCATION


ADVERTISE WITH US


ABOUT SLEEP

ABSTRACT SUPPLEMENTS


ACCEPTED PAPERS
Beginning January 1st 2017, SLEEP will be published by Oxford University Press. Unfortunately, that website is experiencing some technical issues. We expect to have them resolved shortly and apologize for your inconvenience. We will notify all subscribers once the problem is resolved and thank you for your patience.

Bookmark and Share         RSS Feed

VOLUME 39, ISSUE 12

BASIC SCIENCE
Different Simultaneous Sleep States in the Hippocampus and Neocortex

http://dx.doi.org/10.5665/sleep.6326

Joshua J. Emrick, DDS1; Brooks A. Gross, PhD2; Brett T. Riley, MBA3; Gina R. Poe, PhD2

1University of California, San Francisco, CA; 2University of California, Los Angeles, CA; 3Columbia Basin College, Pasco, WA



  Expand  Table of Contents    
Text size:  

Supplemental Material

Login to view supplemental material

Study Objectives:

Investigators assign sleep-waking states using brain activity collected from a single site, with the assumption that states occur at the same time throughout the brain. We sought to determine if sleep-waking states differ between two separate structures: the hippocampus and neocortex.

Methods:

We measured electrical signals (electroencephalograms and electromyograms) during sleep from the hippocampus and neocortex of five freely behaving adult male rats. We assigned sleep-waking states in 10-sec epochs based on standard scoring criteria across a 4-h recording, then analyzed and compared states and signals from simultaneous epochs between sites.

Results:

We found that the total amount of each state, assigned independently using the hippocampal and neocortical signals, was similar between the hippocampus and neocortex. However, states at simultaneous epochs were different as often as they were the same (P = 0.82). Furthermore, we found that the progression of states often flowed through asynchronous state-pairs led by the hippocampus. For example, the hippocampus progressed from transition-to-rapid eye movement sleep to rapid eye movement sleep before the neocortex more often than in synchrony with the neocortex (38.7 ± 16.2% versus 15.8 ± 5.6% mean ± standard error of the mean).

Conclusions:

We demonstrate that hippocampal and neocortical sleep-waking states often differ in the same epoch. Consequently, electrode location affects estimates of sleep architecture, state transition timing, and perhaps even percentage of time in sleep states. Therefore, under normal conditions, models assuming brain state homogeneity should not be applied to the sleeping or waking brain.

Citation:

Emrick JJ, Gross BA, Riley BT, Poe GR. Different simultaneous sleep states in the hippocampus and neocortex. SLEEP 2016;39(12):2201–2209.

Expand  Table of Contents
Classifieds View SLEEP 2011 Poster Presentations Online